Save & reload 保存提取
作者:
莫烦
2016-10-30
编辑:
学习资料:
今天学习如何保存神经网络,这样以后想要用的时候直接提取就可以。
训练模型 ¶
下面的导入数据和训练模型用的是之前讲过的回归模型的例子,今天要做的是如何保存这个模型。
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.models import Sequential
from keras.layers import Dense
from keras.models import load_model
# create some data
X = np.linspace(-1, 1, 200)
np.random.shuffle(X) # randomize the data
Y = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, ))
X_train, Y_train = X[:160], Y[:160] # first 160 data points
X_test, Y_test = X[160:], Y[160:] # last 40 data points
model = Sequential()
model.add(Dense(output_dim=1, input_dim=1))
model.compile(loss='mse', optimizer='sgd')
for step in range(301):
cost = model.train_on_batch(X_train, Y_train)
保存模型 ¶
训练完模型之后,可以打印一下预测的结果,接下来就保存模型。
保存的时候只需要一行代码 model.save
,再给它加一个名字就可以用 h5
的格式保存起来。
这里注意,需要已经安装了 HDF5
这个模块。
保存完模型之后,删掉它,后面可以来比较是否成功的保存。
# save
print('test before save: ', model.predict(X_test[0:2]))
model.save('my_model.h5') # HDF5 file, you have to pip3 install h5py if don't have it
del model # deletes the existing model
"""
test before save: [[ 1.87243938] [ 2.20500779]]
"""
导入模型并应用 ¶
导入保存好的模型,再执行一遍预测,与之前预测的结果比较,可以发现结果是一样的。
# load
model = load_model('my_model.h5')
print('test after load: ', model.predict(X_test[0:2]))
"""
test after load: [[ 1.87243938] [ 2.20500779]]
"""
另外还有其他保存模型并调用的方式,第一种是只保存权重而不保存模型的结构。
# save and load weights
model.save_weights('my_model_weights.h5')
model.load_weights('my_model_weights.h5')
第二种是用 model.to_json
保存完结构之后,然后再去加载这个json_string
。
# save and load fresh network without trained weights
from keras.models import model_from_json
json_string = model.to_json()
model = model_from_json(json_string)
分享到:
如果你觉得这篇文章或视频对你的学习很有帮助, 请你也分享它, 让它能再次帮助到更多的需要学习的人.
莫烦没有正式的经济来源, 如果你也想支持 莫烦Python 并看到更好的教学内容, 赞助他一点点, 作为鼓励他继续开源的动力.